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We discuss convergence and coupling of Markov chains, and present general relations between the transfer
matrices describing these two processes. We then analyze a recently developed local-patch algorithm, which
computes rigorous upper bound for the coupling time of a Markov chain for nontrivial statistical-mechanics
models. Using the “coupling from the past” protocol, this allows one to exactly sample the underlying equi-
librium distribution. For spin glasses in two and three spatial dimensions, the local-patch algorithm works at
lower temperatures than previous exact-sampling methods. We discuss variants of the algorithm which might
allow one to reach, in three dimensions, the spin-glass transition temperature. The algorithm can be adapted to
hard-sphere models. For two-dimensional hard disks, the algorithm allows us to draw exact samples at higher
densities than previously possible.
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I. INTRODUCTION

The Monte Carlo method is a fundamental computational
tool in science. Its goal is to sample configurations x in a
given state space from a probability distribution ��x�. This
can usually not be achieved directly for multidimensional
distributions. Markov chain Monte Carlo methods �1,2� over-
come this problem by generating configurations x0 ,x1 ,x2 , . . .
starting from an initial configuration x0, which belongs to a
simpler distribution �0 �often a fixed initial condition, or
some ad hoc random choice�. Configurations xt are then gen-
erated from xt−1 according to a stochastic algorithm which
guarantees, as time moves on, that �t departs from the initial
condition and converges for t→� toward the equilibrium
distribution ����. The Markov chain approach can be
implemented for arbitrary distributions �, using, for ex-
ample, the Metropolis and the heat-bath algorithms. For
many applications, enormous effort has gone into designing
fast algorithms for which one reaches �t�x����x� for rea-
sonable running times t. In this paper, we are concerned with
a related problem: rather than to find the fastest algorithm for
a given problem, we are interested in quantifying the speed
of a given Markov chain algorithm. This is, we want to prove
after which time t the sample xt is equilibrated. It then re-
flects the equilibrium distribution and no longer the initial
configurations. In many practical applications, it is extremely
difficult to decide from within the simulation whether it has
indeed equilibrated �2–4�. Instead, one must validate the
simulation results with other approaches, from exact solu-
tions to experimental data. The correct characterization of
the convergence toward equilibrium from within the simula-
tion has remained a serious conceptual and practical problem
of the Monte Carlo method.

From a fundamental viewpoint, the problem of rigorously
proving convergence of a simulation was solved, at least in
principle, through a paradigm called “exact sampling,”
which allows to generate, with Markov chains, samples x
directly from the equilibrium distribution � without any in-
fluence of the initial configuration �5�. In practice, however,
it has not been possible to implement exact sampling for
many complicated problems, as, for example, disordered sys-
tems, for which standard methods of evaluating equilibration
times fail.

The reason for this difficulty is as follows: exact sampling
proves for a given Markov chain simulation that the correla-
tion of the initial configuration with the configuration at time
t strictly vanishes. This is done by showing explicitly that all
possible initial configurations xt0

yield the same output under
coupled Monte Carlo dynamics. In many simple models, one
can prove this coupling property indirectly. In general, how-
ever, one must indeed survey the entire configuration space.
This is usually too complicated to be achieved.

We recently developed a local-patch algorithm �6�, which
indeed monitors the entire configuration space of compli-
cated systems, even for very large sizes. The approach uses
local information, concentrated on so-called “patches.” The
scale of these patches increases during the simulation. Infor-
mation on patches can then be combined for the entire sys-
tem to provide a crucial upper bound for the �global� cou-
pling time, and to generate an exact sample. The algorithm
was demonstrated to work for spin glasses at lower tempera-
tures than previous methods �7,8�, even though the physi-
cally interesting regime has still not been reached yet. The
local-patch algorithm is quite general: in addition to spin
glasses, we implement it in this paper for hard disks and
improve on previous results �9,10�. The successful applica-
tion of exact sampling to hard-sphere systems is remarkable
because the configuration space is continuous so that, na-
ively, its complete survey appears out of reach.

A. Transfer matrix

A Markov chain is fully characterized by the so-called
“transfer matrix” of transition probabilities between any two
configurations k and l. As will be illustrated shortly �Sec. II�
in a specific example, the largest eigenvalue of the transfer
matrix is �1=1 and the corresponding eigenvector �1 de-
scribes the equilibrium state. The convergence toward equi-
librium is governed by the spectrum of the transfer matrix
and by the overlap of the eigenvectors �k with the initial
configuration

�t�x� = ��x� + �
�k,�k�1

��k	�0
�k�x��k
t . �1�

In the limit of infinite simulation time, the second-largest
eigenvalue determines the exponential convergence of the
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probability distribution toward equilibrium. This eigenvalue
sets a time scale

�corr = 1/	log �2	 ,

and the convergence is as

�t − � � exp�− t/�corr� for t → � . �2�

The rigorous determination of convergence properties of
Markov chains has been undertaken in many cases, from urn
models to card-shuffling �see �11��, diffusion processes, and
many more �see �12��. Efficient algorithms, as, for example,
the bunching method �2� are commonly used to perform an
empirical error analysis of Monte Carlo data in more com-
plicated cases, where rigorous calculations are out of the
question. However, these methods are not failsafe. In prac-
tice, it is often difficult to extract �corr from the large number
of physically relevant time scales. In disordered systems, for
example, there is often no reliable way to ascertain that the
simulation has run long enough, and �corr may be much larger
than assumed �see, e.g., �2�, Sec. 1.5�.

B. Loss of correlation and exact sampling

In the limit of infinite times t→�, the Markov chain con-
verges toward the equilibrium distribution, and the positions
xt become independent of the initial condition. The loss of
correlation with the initial condition is evident for Markov
chains that couple, that is, which for each possible initial
condition x0 produce the same output xt. In many cases of
interest, this happens after a finite global “coupling time” t
	 tcoup, which depends on the realization of the Markov
chain. Propp and Wilson �5� realized that this coupling prop-
erty allows one to draw “exact” samples from the distribu-
tion �.

This approach, called “coupling from the past,” eliminates
the problem of analyzing the convergence properties. How-
ever, to establish that a Markov chain has coupled, the entire
state space of the system must be supervised. This was be-
lieved infeasible except for special problems where the dy-
namics conserves a certain �partial� ordering relation on con-
figurations. A partial order is conserved in heat-bath
dynamics of the ferromagnetic Ising model, whereas the
frustration in the spin-glass model foils this simplification.

II. COUPLING AND CONVERGENCE IN A ONE-
DIMENSIONAL MODEL

We first discuss convergence and coupling for a Markov
chain describing the hopping of a single particle on a simple
N-site lattice with periodic boundary conditions �see Fig. 1�.
In one time step, the particle hops with probability 1

3 from
one site to its two neighbors

pk→k+1 = pk→k−1 = 1/3 �if possible� . �3�

In addition, we have p1→N= pN→1=1 /3.
The equal hopping probabilities imply via the detailed

balance condition

�kpk→l = �lpl→k �4�

that the stationary probability distribution �k=1 /N of this
problem is independent of k.

This system’s Monte Carlo algorithm is encoded in the
N
N transfer matrix T1,1

T1,1 = �p�i → j�� =
1

3
1 1 0 ¯ 0 1

1 1 � ¯ 0

0 � � � ]

] � � � 0

0 ¯ � 1 1

1 0 ¯ 0 1 1

� . �5�

The eigenvalues of T1,1 are �k
1,1= 1

3 �1+2 cos2�k−1��
N � ,k

=1, . . . , Int�N /2�+1 �with multiplicities� that is, for N=5,
�1, 1+�5

6 , 1−�5
6 �. The largest eigenvalue, �1

1,1=1 corresponds to
the conservation of probabilities. By construction, it is asso-
ciated with the equilibrium solution ��1 , . . . ,�N�
= � 1

N , . . . , 1
N �. The second-largest eigenvalue is �2

1,1. For N
=5 we have �2

1,1= 1+�5
6 =0.539. This eigenvalue controls the

long-time corrections to the stationary solution, which vanish
as ��2

1,1�t=exp�−t /�corr�, with

�corr = 1/	log �2
1,1	 .

We note that the time scale �corr only describes the
asymptotic behavior of the correlation. The calculation of the
time t at which the probability distribution �t itself is within
a suitably chosen � of the equilibrium distribution � is more
involved �see, for example, �11,12�, �.

A. Coupling

As illustrated in Fig. 2, the Monte Carlo algorithm can be
formulated in terms of random maps. In our example, this

1

2

3

4

5

t0 t

FIG. 1. A Markov chain on a five-site lattice with periodic
boundary conditions. The particle hops from a site k toward its
neighbors with probability 1/3 each.

FIG. 2. Extended Monte Carlo simulation on N=5 sites. Trajec-
tories from all possible initial configurations at t= t0 are indicated.
They “couple” at t= t0+ tcoup. The coupling time �here, tcoup=10�
depends on the realization of the Markov chain.
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means that instead of prescribing one move per time step, as
in Fig. 1, we now sample moves for all times t and all sites
k, in such a way that the dynamics of a single particle again
satisfies the detailed balance condition of Eq. �4�. The most
natural implementation of this approach is illustrated in Fig.
2: arrows are chosen independently for all times t and all
sites k. At time t0, for example, the particle should move
down from sites 1, 3, 4, and 5 and straight from site 2. We
can now check the outcome of the Monte Carlo calculation.
In the example of Fig. 2, from time t0+10 on, all initial
configurations of the single particle yield the same output.
This is remarkable because, evidently, at this time the initial
conditions are completely forgotten.

The coupling time tcoup is a random variable �tcoup=10 in
Fig. 2�, which depends on the realization of the full Monte
Carlo simulation from time t0 onwards �until coupling has
been reached�. The independence of random maps on differ-
ent time steps implies that the probability for not coupling
vanishes at least exponentially fast in the limit t→�.

Under the random-map dynamics, an initial state with N
particles eventually evolves into a state with one particle �in
later sections, spin-glass configurations will take the place of
the single-particle positions�. More generally, a state with k
configurations can evolve at each time step into a state with
k��k configurations. Figure 2 displays a sequence of ran-
dom maps and illustrates the associated time-forward search
of the coupling time.

This extended Monte Carlo dynamics on k-configuration
states can again be described by a transfer matrix

Tfw =
T1,1 T2,1 . . . . . .

0 T2,2 T3,2 . . .

0 0 T3,3 . . .

. . . �

0 0 TN,N
� , �6�

where the block Tk,l �of sizes � N
l �
 � N

k �� concerns all the
processes which lead from a state at time t with k configu-
rations to a state with l�k configurations at time t+1. The
upper left block of this matrix, T1,1, is the original matrix
from Eq. �5�. As an example, we find from Eq. �3� the fol-
lowing elements of this transfer matrix:

Tfw�	� � • � •
 → 	� • � • �
� = 1/9,

Tfw�	� � • � •
 → 	� � � • �
� = 1/9,

Tfw�	� � • • •
 → 	� � � • �
� = 1/27,

etc. The matrix Tfw describes a physical system with variable
particle number �from 1 to N� and a space comprising
2N−1 states, the number of nonempty states in this new
simulation �for a problem of N spins, the number of configu-
rations is 2N and the total number of k-configuration states
�states with k configurations� is 22N

−1�.
The “forward” transfer matrix Tfw allows us to compute

the coupling probabilities as a function of time in Fig. 3. The
matrix Tfw is block-triangular in the number of particles
�k , l�, with the �1,1� block given by T1,1. Therefore, all the

eigenvalues of T1,1 are also eigenvalues of Tfw. In particular,
the largest eigenvalue of Tfw is again �1

fw=1, with corre-
sponding right eigenvector 1

5 �	• � � � �
+ ¯+	� � � � •
�. The
second-largest eigenvalue of Tfw belongs to the �2,2� block
and leads to the time scale of the coupling, �coup. It is given
by �2

fw=0.838, larger than �MC��2
1,1. This second-largest ei-

genvalue �2
fw governs the coupling probability P�tcoup� for

large times. It follows from the block-triangular form of the
forward transfer matrix Tfw that the time scales satisfy �coup
	�corr. A general argument allows us to better understand
this result: for any running time t, we may separate all the
Markov chains into those that have already coupled and
those that have not. Only the noncoupling chains �whose
number vanishes as exp�−t /�coup�� contribute to connected
correlation functions

exp�− t/�corr� � �O�t�O�0�


= �
config.t,0

P�tcoup � t,t,0�O�0�O�t�

+ �
config.0

�0�0�O�0� �
config.t

P�tcoup � t,t�O�t� .

Here, O is an observable whose mean value is zero and t
the configuration of the system at time t. For the chains
which have coupled by the time t, t does not depend on 0,
and the contribution to the correlation function vanishes. For
the other chains, we find

exp�− t/�corr� = �
config.t,0

P�tcoup � t,t,0�O�0�O�t�

� exp�− t/�coup�exp�− t/��� , �7�

where we suppose that even the noncoupling chains
converge toward equilibrium on a time scale ��, and use that
the probability for a chain not to have coupled behaves as
exp�−t /�coup� in the long-time limit. Equation �7� shows that
the difference between �coup and �corr is caused by the con-
vergence taking place within noncoupling chains.
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P(
t c

ou
p>

t)

time t

non-coupling prob.
exp(-t/τcoup)

exp(-t/τ*)
non-coupling corr.

exp(-t/τcorr)

FIG. 3. The exact probability that the Markov chains have not
coupled by time t �computed by repeated application of the forward
transfer matrix�, compared to the time-scales �corr, �coup, and ��

�one-dimensional diffusion model with N=5�.
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1

�corr
=

1

�coup
+

1

��
. �8�

This relation is illustrated in Fig. 3 for the one-dimensional
diffusion model with N=5. A later figure, Fig. 8, will illus-
trate for the case of spin glasses the split between the general
spin–spin correlation function and that same object com-
puted for noncoupling chains only.

B. Forward and backward coupling

The probability distribution of coupling times in the for-
ward direction can be obtained from the transfer matrix Tfw

as we discussed in Sec. II A. Here, we analyze the distribu-
tion of coupling times in the backward direction for the ap-
plication of the “coupling from the past” protocol which, as
we will see, is the same as the one in the forward direction.
The backward coupling process leads to a generalized trans-
fer matrix, Tbw, which again describes an extended Monte
Carlo simulation.

We consider a hypothetical simulation which has run
since time t=−� up to time t=0 �see Fig. 4�. It follows from
the discussion in Sec. II A that the simulation has coupled.
Furthermore, because of the infinite separation between the
infinitely remote initial condition and the final one, the re-
sulting configuration �at t=0� is in equilibrium. But it re-
mains to be seen which one of the five configurations at t
=0 is generated. In the example of Fig. 4, a one-step back-
track to time t=−1 allows us to see that the configuration at
t=0 can be neither k=1 nor k=3 nor k=5. Likewise, for N
−1 output positions on the N-site ring this back-propagation
leads to a dead end, and only a single position yields a full
set of possibilities at some time −tcoup

bw . Thus, to find the
output configuration of the simulation, one is interested in
the first time in the past for which the simulation couples,
that is one searches the “backward” coupling time. The
implementation of this backward simulation, as defined for
many particles, can again be described by a transfer matrix.
For any distribution of arrows, any occupied site k at time t
propagates its occupation back to all the sites at time t−1
which have arrows pointing toward k. The matrix element of
Tbw between two states is given by the statistical weights of
all the arrows connecting the two states. For example, we
find for Tbw

Tbw�	� � • � �
 → 	� • • � �
� = 8/81,

Tbw�	• • � • •
 → 	• � � • •
� = 8/81,

Tbw�	� � • � •

time t

� →�	� � � • �

time t+1

� = 2/27. �9�

This is a nontrivial variant of the forward simulation as, for
example, the matrix Tbw is not block-triangular as Tfw, but it
is particle-hole symmetric �as we see in the above example�.

Formally, a random-map f �here a set of arrows� associ-
ates configurations which are connected under the Monte
Carlo dynamics. A k-configuration state 	x
 is by definition a
set of configurations. At time t the state 	x
 can be associated
with the state 	y
 at time t+1 via the forward matrix if and
only if 	y
 is the �set� image of 	x
 by an allowed mapping f
�i.e., 	y
= f�	x
��. The same holds for the backward matrix but
	x
 must be the reciprocal �set� image of 	y
 �i.e., 	x

= f−1�	y
��. The backward transfer matrix Tbw manifestly dif-
fers from the forward matrix Tfw. However, we construct
explicitly in Appendix A the similarity transform that maps
Tfw onto Tbw. This means that

PTfw = TbwP

�see Appendix A�. The similarity transformation P associates
a k-configuration state 	x
 with the sum of states that share at
least one configuration with 	x
, included itself. The spectrum
of the backward transfer matrix thus agrees with the one of
the forward matrix and the distribution of coupling times
P�tcoup� is identical for backward and forward dynamics.
This result is natural because the probabilities for not cou-
pling for t time steps are identical in both forward and back-
ward direction: P�tcoup

bw � t�=P�tcoup
fw � t� �see �9��. The prob-

ability distribution P�t= tcoup
bw � measures the weight of the

configuration 	• • • • •
 under repeated application of the back-
ward transfer matrix from the configuration at t=0: 	• � � � �

+ ¯+	� � � � •
.

C. Choice of random maps

Transition probabilities of the forward transfer matrix
must satisfy the Markov chain transition probabilities for
single particles, but the choice of random maps is otherwise
unrestricted. The one-particle sector is trivially correct for
independent moves as in our diffusion model of Sec. II A.
We now discuss several alternative random maps for the one-
dimensional diffusion, which may lower �or increase� the
coupling time �with, however �coup	�corr� or achieve a rapid
reduction in the number of configurations for smaller time
scales.

A naive example for the one-dimensional diffusion ex-
ample consists of arrows, such as in Fig. 2, but which for any
given time t all point into the same direction, straight, up,
and down, each with probability 1/3, so that single-particle
moves satisfy the detailed balance condition. Evidently, this
random map does not couple, and the noncoupling Markov
chains, in Eq. �8�, converge in a time ��=�corr. We now
modify this rigid algorithm by allowing arrows to change
direction with probability �. This makes the Markov chain
couple on a time scale �log1

� , much larger than the correla-
tion time �corr, for small �. The choice of independent ran-
dom moves ��=1� is optimal in this class of maps, but it is
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t�−∞ t0 t0+tfwcoup -tbw
coup t=0

FIG. 4. Extended simulation on N=5 sites. The outcome of this
simulation, from t=−� up to t=0, is k=2. It can be obtained by
backtracking from time t=0 to −tcoup

bw , or by forward simulation
from any t0�−tcoup

bw , through the indicated trajectories. Backtrack-
ing from sites 1, 3, 4, and 5 leads to dead ends.
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not the choice minimizing �coup among all random maps. For
example, we may choose correlated moves for selected
neighboring pairs of sites say, for sites �1,2� and �3,4� and let
the move from site 5 be independent �see Fig. 5�.

Elements of Tfw,corr are, for example,

Tfw,corr�	� � • • �
 → 	� � • • �
� = 0,

Tfw,corr�	� � • • �
 → 	� � • � �
� = 1/3,

Tfw,corr�	� � • • �
 → 	� • � � •
� = 1/3,

Tfw,corr�	� � • • �
 → 	� � • � •
� = 0.

The single-particle sector of this algorithm is as before, but
the second-largest eigenvalue of the transfer matrix Tfw with
such correlated pair moves becomes smaller, indicating
faster coupling

�2
1,1 � �2

fw,corr = 0.777 � �2
fw,indep = 0.838.

Coupling times of both “independent-arrow” random map-
ping and “correlated-pair” random-mapping scale alike for
large N. We note that in applications, as in our patch algo-
rithm of Sec. V, it might be not so much of interest to speed
up the coupling than to rapidly decrease the number of pos-
sible configurations at times t��coup. Therefore, one goal
could be to decrease the eigenvalues of the matrix Tk,k,
k�1, whose time scales correspond to the rapid reduction in
the number of configurations toward more manageable num-
bers.

D. Exact sampling, coupling from the past

As discussed in Sec. II B, the coupling of Markov chains
allows one to produce exact samples of the equilibrium dis-
tribution: in the diffusion example, we were able to run the
Monte Carlo simulation backward in time using Tbw, but this
matrix can usually not be constructed. To find the sample at
time t=0, one may tentatively set a time t0� t and produce
all the random maps between time t0 and t. One can then
check explicitly whether all the possible initial conditions at
time t0 have coupled, that is, for the diffusion problem,
whether the initial N-particle configuration 	• • • • •
 has
yielded one of the one-particle configurations. If this goal
has not been reached, one must complement the random
maps already computed with random maps for earlier times
�see Fig. 4�. The one-dimensional diffusion problem without
periodic boundary conditions illustrates an algorithm which
determines the coupling time with much less effort. We con-

sider odd times at which only sites 1, 3, and 5 and even time
steps at which only sites 2 and 4 may flip �see Fig. 6�. This
preserves the correct stationary probability distribution, but
the trajectories no longer cross each other �as at time t0+1 in
Fig. 2�. As a consequence, it suffices to follow the two ex-
tremal configurations, which start at sites k=1 and k=N,
from time t0 on in order to determine the coupling time for a
given full Monte Carlo simulation. The multiple-particle
Monte Carlo simulation starts with the state 	• � � � •
 until it
yields a single-particle state. The above strategy of following
extremal configurations can be applied to the ferromagnetic
Ising model �but not to spin glasses, see �2,5��. In this case,
the two configurations with all spins up and all spins down,
respectively, are extremal. This idea also holds for the heat-
bath algorithm of two-dimensional directed polymers in a
random medium.

III. COUPLING AND CONVERGENCE IN SPIN MODELS

We study the Edwards-Anderson �J Ising spin glass on a
d-dimensional square lattice. The energy of a configuration
= �1 , . . . ,N� with k= �1 is

H�� = − �
�i,j


Jiji j ,

where �i , j
 indicates the sum over the 2d nearest neighbors.
This model has a phase transition at finite temperature in
three dimensions and at zero temperature in two dimensions.
Sampling spin-glass configurations with Markov chain algo-
rithms is extremely difficult in d=3 dimensions below the
critical temperature, but it is also nontrivial in the two-
dimensional case �13�. We concentrate here on the study of a
local heat-bath Monte Carlo algorithm, for which we apply
the coupling-from-the-past protocol and obtain exact
samples. We note that in two dimensions, the exact partition
function of the Ising model on a finite lattice can be deter-
mined exactly for any choice of couplings �2,14�. This makes
possible a direct-sampling algorithm, which is completely
unrelated to the material presented here, but which we
sketch, for the sake of completeness, in Appendix B.

The heat-bath Monte Carlo algorithm for spin models up-
dates at each time step a randomly chosen site i of a spin
configuration by comparing a function of the local field on
site i with a uniform random number �i�t�=ran�0,1�
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FIG. 5. Left: transition probabilities for pairs �1,2� and �3,4� for
the correlated random map. Right: in the extended Monte Carlo
simulation shown, the one-particle transition probabilities are as in
Fig. 1, but nearest-neighbor coupling is favored.

FIG. 6. Extended Monte Carlo simulation with odd �o� and even
�e� time steps on a lattice without periodic boundary conditions.
Trajectories cannot cross, and the coupling of the two extremal
initial configurations �the simulations starting at time t0 from sites 1
and 5� determines the coupling time.
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i�t + 1� = �1 if �i�t� � �1 + e−2�hi�t��−1

− 1 else
� , �10�

where hi�t�=� jJij� j�t� is the local field on site i. A realiza-
tion of the Markov chain corresponds to sampling the real-
valued random numbers �. . . ,��t0� ,��t0+1� , . . . ,��−1�� and
the random integers �. . . , i�t0� , i�t0+1� , . . . , i�−1��. The unit of
“physical” time �one “sweep”� corresponds to N individual
updates. The situation is now much more complicated than
for the 1d diffusion, as the role of the five initial configura-
tions in Fig. 2 is taken up by the 2N possible spin configura-
tions. To prove coupling one must show to which configura-
tion they all converge at the coupling time. The state space is
huge and one must find strategies to avoid enumerating and
surveying 2N configurations.

A. Partial-survey approximation

In �6�, we presented an exact-sampling algorithm which
works down to quite low temperatures in the two-
dimensional Ising spin glass, and which is also operational in
three dimensions. We found that practically the same results
could be obtained by starting the simulation at time t0 not
from all the 2N initial configurations, but from a more man-
ageable number N�t0� of randomly chosen configurations.
We show in Fig. 7 that such “partial-survey” calculations
yield useful lower bounds for the coupling time scale �coup.
Each curve in the figure represents the mean number of dis-
tinct configurations remaining after coupled Monte Carlo
simulations �that is, with the same random numbers �� , i� for
all configurations� for different values of N�t0�. Increasing
N�t0� within this partial-survey approximation naturally im-
proves the lower bound on the coupling time but, in practice,
the value obtained saturates quite quickly.

B. Correlation functions

As discussed previously, �coup is always larger than �corr
because only noncoupling chains contribute to correlation
functions �see Eq. �8��. To again illustrate the relation be-
tween coupling and convergence times, we separate in Fig. 8
noncoupling chains from the calculation of the spin-spin cor-
relation function of a 8
8 spin glass at inverse temperature

�=1. Indeed, even if the chain has not coupled, the configu-
rations t may lose the dependence on the initial configura-
tion 0.

We shall continue our study of spin glasses in Sec. V with
an algorithm which rigorously establishes coupling down to
a constant temperature for large systems.

IV. COUPLING FOR HARD-SPHERE SYSTEMS

In this section, we discuss the application of the “coupling
from the past” protocol to hard-sphere systems. The study of
Monte Carlo algorithms for hard-sphere systems goes back a
long time, as the Metropolis algorithm was first implemented
for hard disks, that is, two-dimensional spheres �1�. Even
today, the physics of the hard-disk system is not well under-
stood, and Monte Carlo algorithms have not been developed
as successfully as, say, for the Ising model. In this very con-
strained system, the estimation of correlation times is quite
controversial, especially at high densities �15�, and rigorous
results from exact-sampling approaches would be extremely
welcome.

We first discuss the birth-death formulation of the Markov
chain Monte Carlo algorithm for this system and then com-
pute lower bounds on coupling times using the partial-survey
algorithm. Its empirical coupling time saturates �for increas-
ing N�t0�� to much smaller values than the coupling times
obtained by the summary-state method �9,10�. This suggests
that these previous algorithms are not optimal, an impression
which is confirmed by our local-patch algorithm of Sec. V E.

The partition function of hard spheres in the grand-
canonical ensemble, with fugacity �, is given by a weighted
sum over legal configurations of spheres

Z = �
N=0

+� � d2N�N��N���N�� . �11�

Here, configurations of N spheres are written as

�N� = ��x1,y1�,�x2,y2�, . . . ,�xN,yN�� ,

where �xk ,yk� denotes the centers of the spheres. In Eq. �11�,
���N�� equals one if spheres of the configuration �N� do not
overlap and zero otherwise. We again use periodic boundary
conditions.
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A. Birth-death algorithm for hard spheres

The spatial Poisson birth-death process allows us to apply
coupling from the past to hard-sphere systems �see �9,10��:
disks of radius r arrive �“are born”� randomly on a two-
dimensional unit square with constant rate �. This transition
from N to N+1 particles is described, in Eq. �12�, by the
probability P��N�→�N+1��. Once born, they disappear
�“die”� with unit rate.

The probability for a disk to arrive within an infinitesimal
time dt in a small box of area dS centered at �x ,y� is �dtdS.
This disk is added to the configuration only if it overlaps
with no other disk present. Each disk disappears with prob-
ability dt within the time interval dt. Sphere are added at
point �x ,y� or removed from the configuration �N� according
to the detailed balance condition. With the notation �N+1�

=�N�� ��x ,y��, we have

P��N� → �N+1�����N�� = ����N+1�����N�� = ���N+1�� ,

P��N+1� → �N�����N+1�� = 1 
 ���N+1�� . �12�

In Fig. 9, we illustrate the time evolution of accepted and
rejected birth-death events on a one-dimensional hard-sphere
problem, starting from an empty initial condition at time t0.

In the hard-sphere algorithm, the probability distribution
of time intervals between successive births is an exponential
with parameter � :P��b�=�e−��b. In Fig. 9, the lifetime of a
sphere is represented by a horizontal extension of the box,
irrespective of whether it has been accepted or not �the ver-
tical dimension denotes the diameter�. Lifetimes are expo-
nentially distributed as well. For the exponential distribution,
the time before the next death of a system of N spheres
follows an exponential distribution with parameter N. Like-
wise the time before any event, �birth or death�, follows an
exponential distribution with parameter �+N. The probabil-
ity for the next event to be a birth is then �

�+N .

B. Coupling and partial-survey approximation

Coupling from the past applies to hard-sphere systems
even though the space of configurations is continuous �unlike
in lattice simulations�. To apply the protocol, one considers a
time evolution, as in Fig. 9, but stretching back to time
t=−�. Two special aspects must now be handled.

First, we must determine which boxes �corresponding to
spheres� are indeed placed �“True”�, and which ones are re-

jected �“False”�. This is difficult to decide at high density.
However, in the low-density case presented in Fig. 10, sev-
eral spheres are True, simply because they do not overlap
with already present True or False spheres. This allows the
status of other spheres to be fixed and, finally, the configu-
ration to be constructed. In the limit N→�, the approach
works up to a constant density �16�. This density is much
higher than the density �1 /N direct-sampling algorithm can
achieve �2�. This approach �9,10� is equivalent to deciding
whether a given spin is up or down in the “summary-state”
algorithm for Ising systems �7,8�, which, in the thermody-
namic limit works down to a fixed constant temperature.

Second, one must fix the initial condition at time −T, be-
cause spheres born at times smaller than −T may still be
alive at time −T. This is solved through the sampling of a
second time, Tstart, after which we know that all spheres
present at time −T have disappeared. The time interval
Tstart+T is sampled as the maximum of Nmax lifetimes, where
Nmax is an upper bound on the number of spheres in a legal
configuration.

Figure 10 sketches the time evolution of a Monte Carlo
simulation for the one-dimensional hard-sphere problem,
which has started at time t=−�. Boxes are drawn starting
from time −T, but the simulation is picked up at time Tstart. It
is straightforward to complement the simulation shown �be-
tween times −2T and −T, for example�, in case it does not
couple in the interval shown. However, we must show that it
couples between −2T and −T or at least results in less than
Nmax spheres. In the Monte Carlo simulation in Fig. 10, the
status of the boxes at later times can be easily decided, be-
cause at later times all spheres belong to clusters which are
disjoint from the initial condition. However, this possibility
disappears at higher densities. A simple example of this is
shown in Fig. 11. As one cannot decide on the status of the
initial sphere �which crosses the line at Tstart�, we should
initialize the simulation with the two configurations, one cor-
responding to a True state and one to a False state. After
several steps of the time evolution, we arrive in both cases at
the same physical configuration �the two dark spheres, which
are both True�.

For all times t�Tstart, we consider the set C�t� of all True
or False spheres crossing the time line at t �see Fig. 10�.
From the set C, one can in principle construct all the possible
initial configurations, but their number remains huge. As in
the spin-glass case, we may also select N�Tstart� among these

t0 t0+tsim t

FIG. 9. Simulation of the birth-death algorithm for one-
dimensional “spheres” in a box. The simulation starts at time t0 and
stops at t0+ tsim with N=2 spheres. Transparent spheres are rejected
because they overlap with spheres already present.

FIG. 10. Time evolution of a one-dimensional birth-death simu-
lation in a box of size L. All spheres correspond to rectangles whose
horizontal extension indicates their life time. From any possible cut
of True boxes at Tstart �seven boxes actually cut the line, so there are
�27 possible cuts� one can deduce the output at time t=0, as in Fig.
9.
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configurations, and propagate these. This is again the partial-
survey approximation. In Fig. 12, we compare average lower
bounds on the coupling time from this approximation with
results from the summary-state algorithm �9�. In the time
evolution of Fig. 10, one can determine the number of re-
maining configurations at any time t�Tstart and detect when
exactly the coupling occurs.

V. LOCAL-PATCH ALGORITHM

In the present section, we discuss our local-patch algo-
rithm, which performs the heat-bath dynamics for a general
d-dimensional Ising spin glass on an N-site hypercubic lat-
tice. This algorithm allows us to control all the 2N initial
configurations even for very large lattices and to eventually
prove that the system has coupled. The PYTHON script imple-
menting this algorithm has less than 300 lines. It is available
electronically �17�.

A. Patches

The �nonrigorous� partial-survey algorithm of Sec. III A
determines the coupling time for a subset of all the configu-
rations at time t. The �rigorous� patch algorithm, in contrast,
works with a superset of all configurations at time t: by re-
stricting the configurations to the smaller region of a patch,
one severely limits their number, at the price of introducing

compatibility problems between neighboring patches. For the
two-dimensional spin glass, we use N rectangular patches of
same shape and orientation, with M sites, and initially at t
= t0, we have 2M spin configurations on each patch. Likewise,
the set of global spin configurations is broken up into a list
�S1�t� , . . . ,SN�t�� of sets Sk�t� of spin configurations restricted
to patches k. We can recover a superset ��t� of all relevant
spin configurations from the direct product

��t� = S1�t� � S2�t� � ¯ � SN�t�/�compat� . �13�

Here, each configuration of ��t� is pieced together from con-
figurations on all patches, with compatible spins on all lattice
sites. �Two compatible spin configurations, on patches k and
l, are shown in Fig. 13.� On large lattices, the direct product
in Eq. �13� can be performed only if the number of spin
configurations per patch is small. If there is only one con-
figuration per patch, we can construct a unique global con-
figuration on the whole lattice.

For each time step t of the heat-bath algorithm, we choose
a random lattice site i and a random number �=ran�0,1� and
then update the spin i for all configurations on all patches
containing i. The site i may be in the center of a patch k �all
the neighbors of site i also belong to k, see Fig. 13�. In this
case, each configuration of Sk�t� yields one configuration of
Sk�t+1�. Several configurations in Sk�t� may yield the same
configuration in Sk�t+1�, so that the size of Sk does not in-
crease in this case. If the site i is on the boundary of a patch
l, we only know upper and lower bounds for the field on the
site i and, depending on the value of the random number �,
may be unable to update i. In this case, we add two con-
figurations to the set Sk�t+1�, corresponding to i=−1 as
well as i=+1. The set Sk�t+1� may then contain more con-
figurations than Sk�t�.

B. Compatibilities, pruning

Besides updating configurations on patches, we also per-
form a “pruning” operation: Fig. 13 presents two “compat-
ible” configurations on patches k and l. These could possibly
be pieced together into a global configuration, together with
configurations on other patches. On the other hand, if the set
Sl contains no configuration compatible with a configuration
� on patch k, we can eliminate �prune� � from Sk. Pruning
may be implemented through a dictionary �hash table�, using
as “key” the part of the patch configuration in the overlap
region between k and l, and as “value” the list of patch
configurations sharing this key �see Fig. 14�. This is pro-

Tstart t

FIG. 11. Example of a time evolution of the one-dimensional
birth-death simulation, which where no single sphere can be de-
cided independently. Starting with all possible choices of the initial
configuration at t=Tstart allows to prove coupling. �The two dark
spheres are True, while the transparent sphere must be False.�
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FIG. 13. Two patches, k and l, with a pair of compatible spin
configurations.
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grammed very easily in the PYTHON programming language
�17�.

Pruning can be iterated until all the sets Sk�t� are pairwise
compatible. To achieve this goal, it suffices to prune nearest-
neighbor patches only. We have found it useful to perform
one pruning operation for each pair of nearest-neighbor
patches after a certain number of updates �see Fig. 15�. The
average number of configurations per patch saturates to a
value that depends on the temperature and also the size of the
patch. This is due to the balance between the decrease in the
number of configurations induced by the coupling and its
increase caused by the noise at the patch boundaries. This
noise is reduced through the crucial pruning step of the al-
gorithm.

C. Merging of patches

As illustrated in Fig. 15, the number of configurations per
patch does not necessarily drop to one at large times, even if
the underlying heat-bath dynamics couples. The entropy per
spin is smaller for larger patches, because the influence of
the boundaries is reduced. However, one cannot start the
computation with large patches because of the large number
of possible configurations. A merging procedure allows to
increase the patch size in a rigorous way. Merging is imple-
mented analogously to pruning: for overlapping patches k
and l, dictionaries are again computed with the same keys

and values �see again Fig. 13�. For a given key configuration
on the overlap region, we assemble the corresponding values
in the dictionary of patch k with all corresponding values in
the dictionary of patch l. All these couples of configuration
must be taken into account for the larger patch k� l. The
merging of the configurations on neighboring patches can be
implemented very efficiently in the PYTHON programming
language �17�. In our computations, we start with small
square patches, say of size 3
3, and then pass to the size
4
3, after a few sweeps, then to size 4
4, etc. An analo-
gous procedure is followed in higher dimensions. Results
obtained with this “jump-start” approach are shown in Fig.
16 for the two-dimensional Ising spin glass at temperature
�=0.5, with a disorder average performed over about 100
samples.

D. Memory of compatibilities, variants

In the patch algorithm, the pruning procedure detects in-
consistent configurations in a particular patch. Two configu-
rations on different patches are considered compatible if their
spins match in the overlap region �at time t�. More generally,
we can keep track of the past evolution of patch configura-
tions and may then declare them compatible only if they
have matched for all times up to t. Otherwise, they cannot
belong to a unique global spin configuration.

In �6�, the bipartite nature of the square lattice was used to
update one entire sublattice at a time. In this approach, only
one sublattice is stored at a time. This allows one to start
with larger patches, but the compatibilities between configu-
rations are less well conserved. By contrast, in the present
algorithm, we keep the information on both sublattices, and
one of the sublattices is the past configuration. Two configu-
rations are compatible in this modified version if they are
compatible on both sub-lattices. Likewise one can use past
values of a configuration �t� to restrict its compatibilities
with configurations on other patches.

Other generalizations are more straightforward, one can,
for example, optimize the shape of patches in order to mini-
mize the number of spins on the boundary, and work with
more than N patches in order to increase the chance for de-
tecting incompatibilities of configurations.

key value

[ , , , , , ]
[ , , , , ]
[ , , ]

FIG. 14. A dictionary �hash table� associating keys �configura-
tions in the overlap region between patches k and l� to values �lists
of patch configurations with the given key in patch k�.
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E. Exact sampling for hard spheres with local patches

In this section, we adapt the local-patch algorithm for the
classical model of hard disks in a two-dimensional box with
periodic boundary conditions. As mentioned, it works for
large system sizes at higher density than previous method of
exact sampling.

In Sec. IV B, we introduced the set C�t� of all disks the
dynamics has tried to add in the box and which have not
disappeared at time t. The coupled Monte Carlo simulations
start with all possible configurations that are allowed by the
set C at time Tstart. Because of possible overlap between disks
some of the 2#C possible configurations are invalid but there
may be far too many of them in practice. To reduce the
number of configurations which must be handled, we intro-
duce a regular square lattice with N sites covering the simu-
lation box. Likewise, a superset of all feasible configurations
on a patch at time Tstart can be deduced from the set C,
restricted to disks �True or False� with centers inside the
patch �see Fig. 17�. From then on, whenever disks appear in
the simulation box, we can decide whether they are accepted
on a particular patch configuration by checking overlaps in-
side the patch only. Disks that disappear are simply removed
from all the concerned patch configurations. At birth time, if
the disk to be placed on a patch configuration may overlap
with a disk outside the patch, the configuration is split into
two: one configuration with the new disk and one without �as
for spin systems�. To detect and prune irrelevant configura-
tions we check that the updated sets of configurations are
compatible with other patches by a pruning procedure analo-
gous to the one of Sec. V B. After several updates, the prun-
ing is performed for most of overlapping patches several
times.

For any pair of overlapping patches k and l, the pruning
eliminates patch configurations with are inconsistent with all
other configurations on a neighboring patch. As in the spin-
glass case, this process can be implemented with dictionaries
�hash tables� �see Fig. 18� and can be used to merge configu-
rations on neighboring patches into larger local configura-
tions.

Figure 12, which was first discussed in Sec. IV B, dis-
plays the mean coupling times of a hard-disk birth-death
simulation for several choices of the fugacity �. The radius
of the disks is r=0.04 in a unit square box with periodic
boundary conditions. Results are compared to the partial-
survey approximation algorithm, with N�Tstart�=1000 initial
configurations and to the results of the summary-state algo-
rithm. We note that the lower bound on the coupling time
�obtained by the partial-survey approximation� is just below

its upper bound from the local-patch algorithm. This implies
that we have indeed practically computed the true coupling
time of the algorithm.

We concentrated on determining the coupling times of the
birth–death dynamics for hard disks. However, the regime of
operation of this algorithm is far in the liquid phase �see Fig.
12�, and the physically interesting regime, around the liquid-
solid transition density, ��0.71 �2� is still out of reach for
exact-sampling methods. For hard disks, it remains a chal-
lenge to set up a working partial-survey algorithm with cor-
relation times comparable to those of the usual Metropolis
algorithm �15�.

VI. CONCLUSION

In this paper, we have discussed exact-sampling algo-
rithms that allow one to totally eliminate the influence of the
initial condition from a Markov chain Monte Carlo simula-
tion. This overcomes one of the main limitations of the
method, namely, the rigorous estimation of the correlation
time. We discussed central subjects, such as the relation be-
tween coupling times and convergence times, in a simple
example of one-dimensional diffusion, before applying them
to Ising spin glasses and to hard-sphere simulations. Algo-
rithmically, the exact-sampling framework obliges one to fol-
low the entire state space of a system. In the absence of
simplifications, such as the half-order discussed in Sec. II,
this can be done approximately through a partial survey of
N�t0� initial conditions. One can also restrict the configura-
tion in size onto so-called patches, thereby restricting their
number. A superset of the set of global configurations can in
principle be reconstituted from the patches. This is easier
when the patches are large, and we showed how pruning and
merging operations allow one to increase the size of patches
during the simulation and to finally prove coupling. Our
exact-sampling algorithm works both for spin glasses and
hard-disk systems, and we were able to go to lower tempera-
tures, and higher densities than previous methods.

The partial-survey algorithm, which can be implemented
easily, allowed us to prove that our local-patch algorithm is
optimal for the local dynamics for both spin-glass and hard-
disk systems. We have provided a number of ideas in order
to allow exact-sampling methods to reach the phase transi-

l
k

disk configs patch lpatch k

FIG. 17. Breaking up disk configurations into patches, with two
patches k and l shown.

key value in patch k

[ , , , ]

key value in patch l

[ , , ]]
FIG. 18. The pruning of a pair of patches via the construction of

dictionaries. Each dictionary associates keys �configurations in the
overlap region� to values �lists of patch configurations with the
given key� �compare with Fig. 14�. The merging of patches k and l
would lead in this example to 4
3=12 configurations on the com-
bined patch.
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tion of the three-dimensional Ising spin glass and the critical
density of hard disks.

APPENDIX A: SIMILARITY OF FORWARD AND
BACKWARD TRANSFER MATRICES

Forward and backward transfer matrices completely de-
scribe the coupling dynamic of general Markov chains �on a
finite state space�, that is their elements are the coupled tran-
sition probabilities between sets of configurations. Forward
and backward matrices represent “extended” Monte Carlo
dynamics, in the two time directions. These two formulations
are equivalent, even though the forward dynamics, starting
from t=0, does not generate exact samples. Here, we dem-
onstrate similarity between forward and backward transfer
matrices, and construct the similarity transformation between
the two.

Let � be the finite space of configurations of the problem
of interest. � may contain all N positions on the N-site dif-
fusion problem or the 2N configurations of a N-site spin sys-
tem.

The k-configuration states build up an extended state
space. They provide a natural basis for the forward and back-
ward matrices. This basis is 2�−�, the set of non trivial

parts of �. For any state I�2�−�, we define Ĩ as the set of
states of the basis J that has at least one configuration in

common with I �J� Ĩ⇔ I�J���. The similarity matrix P
is then defined as

P	I
 ª �
J�Ĩ

	J
 . �A1�

A random mapping—arrows for the case of one-dimensional
diffusion—is a mapping on � : f :�→�. It defines a time
step of the Markov chain for every configuration and satisfies
P�f�i�= j�= p�i→ j� and its weight is noted w�f�. In the case
of one-dimensional diffusion with independent arrows, or
any “independent” random map in general, we naturally de-
fine the weight of the random map as a product of elements
of the Monte Carlo transfer matrix as

w�f� = �i��p�i → f�i�� .

The forward matrix associates any state I to all states that it
is connected to by a mapping

Tfw	I
 = �
frand.map

w�f�	f�I�
 .

Using Eq. �A1�, we find

PTfw	I
 = �
frand.map

w�f� �
J�f�I�˜

	J
 . �A2�

The backward matrix Tbw has different rules but we will
show that the similarity PTfw=TbwP holds. Using a random-
map f , a state J at time t evolves to another state K at time
t+1 in the backward process if and only if f−1�K�=J. For
example, in the one-dimensional diffusion, a hole goes to a
hole and a particle goes to a particle. Therefore,

Tbw	J
 = �
frand.map

w�f� �
K,f−1�K�=J

	K


and finally,

TbwP	I
 = �
frand.map

w�f��
J�Ĩ

�
K,f−1�K�=J

	K


= �
frand.map

w�f� �
K,f−1�K��Ĩ

	K
 . �A3�

In fact Eqs. �A3� and �A2� are equivalent because f−1�K�
overlaps I if and only if K overlaps f�I� �f−1�K�� I
� � ⇔K� f�I����. This proves the similarity of the back-
ward and forward matrices.

APPENDIX B: EXACT SAMPLING OF
TWO-DIMENSIONAL SPIN GLASS USING

ANALYTIC SOLUTION

In this appendix, we sketch for completeness an unrelated
direct-sampling algorithm for the two-dimensional Ising spin
glass. To generate exact samples, this algorithm does not use
Markov chains. It rather relies on the fact that the partition
function of the two-dimensional Ising model or of one
sample of the spin glass on a planar lattice with N sites can
be expressed as the square root of the determinant of one
4N
4N matrix �for open boundary conditions� or of four
such matrices �for periodic boundary conditions� �14�. This
relation has been much used in the recent literature, in order
to study the physics of the two-dimensional Ising spin glass
at low temperature �18,19�. The partition function yields the
thermodynamics of the system, but the knowledge of entire
configurations gives, for example, access to complicated spa-
tial configuration functions.

The sampling algorithm for two-dimensional spin-glass
configurations constructs the sample one site after another.
Let us suppose that the gray spins in the left panel of Fig. 19
are already fixed, as shown. We can now set a fictitious cou-
pling Jll

� either to −� or to +� and recalculate the partition
function Z� with both choices. The statistical weight of all
configurations in the original partition function with spin “+”
is then given by

Z

J
*
jk=∞

Z+

J
*
jk=−∞

Z-

FIG. 19. One iteration in the direct-sampling algorithm for the
two-dimensional Ising model. The probabilities ��k=+1� and
��k=−1� �with k the central spin� are obtained from the exact
solution of the Ising model with fictitious couplings Jjk

� = ��.
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�+ =
Z+ exp��Jkl�

Z+ exp��Jkl� + Z− exp�− �Jkl�
�B1�

and this two-valued distribution can be sampled with one
random number. Equation �B1� resembles the heat-bath algo-
rithm of Eq. �10�, but it is not part of a Markov chain: after
obtaining the value of the spin on site k, we keep the ficti-
tious coupling, and add more sites. Going over all sites, we
can generate direct spin-glass samples at any temperature.
We note that this algorithm is polynomial, and the effort is

basically temperature-independent, both for the two-
dimensional Ising model and the Ising spin glass �see also
�20��.

APPENDIX C: PYTHON CODE

The PYTHON 2.5 code, which has produced all the spin-
glass data in this article, contains less than 300 lines. It has
been deposited as supplementary material �17� and may as-
sist in understanding our patch algorithm. An analogous pro-
gram was used for the hard-disk system.
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